Role of carnitine acetyltransferases in acetyl coenzyme A metabolism in Aspergillus nidulans.
نویسندگان
چکیده
The flow of carbon metabolites between cellular compartments is an essential feature of fungal metabolism. During growth on ethanol, acetate, or fatty acids, acetyl units must enter the mitochondrion for metabolism via the tricarboxylic acid cycle, and acetyl coenzyme A (acetyl-CoA) in the cytoplasm is essential for the biosynthetic reactions and for protein acetylation. Acetyl-CoA is produced in the cytoplasm by acetyl-CoA synthetase during growth on acetate and ethanol while β-oxidation of fatty acids generates acetyl-CoA in peroxisomes. The acetyl-carnitine shuttle in which acetyl-CoA is reversibly converted to acetyl-carnitine by carnitine acetyltransferase (CAT) enzymes is important for intracellular transport of acetyl units. In the filamentous ascomycete Aspergillus nidulans, a cytoplasmic CAT, encoded by facC, is essential for growth on sources of cytoplasmic acetyl-CoA while a second CAT, encoded by the acuJ gene, is essential for growth on fatty acids as well as acetate. We have shown that AcuJ contains an N-terminal mitochondrial targeting sequence and a C-terminal peroxisomal targeting sequence (PTS) and is localized to both peroxisomes and mitochondria, independent of the carbon source. Mislocalization of AcuJ to the cytoplasm does not result in loss of growth on acetate but prevents growth on fatty acids. Therefore, while mitochondrial AcuJ is essential for the transfer of acetyl units to mitochondria, peroxisomal localization is required only for transfer from peroxisomes to mitochondria. Peroxisomal AcuJ was not required for the import of acetyl-CoA into peroxisomes for conversion to malate by malate synthase (MLS), and export of acetyl-CoA from peroxisomes to the cytoplasm was found to be independent of FacC when MLS was mislocalized to the cytoplasm.
منابع مشابه
Intracellular acetyl unit transport in fungal carbon metabolism.
Acetyl coenzyme A (acetyl-CoA) is a central metabolite in carbon and energy metabolism. Because of its amphiphilic nature and bulkiness, acetyl-CoA cannot readily traverse biological membranes. In fungi, two systems for acetyl unit transport have been identified: a shuttle dependent on the carrier carnitine and a (peroxisomal) citrate synthase-dependent pathway. In the carnitine-dependent pathw...
متن کاملThe facC gene of Aspergillus nidulans encodes an acetate-inducible carnitine acetyltransferase.
Mutations in the facC gene of Aspergillus nidulans result in an inability to use acetate as a sole carbon source. This gene has been cloned by complementation. The proposed translation product of the facC gene has significant similarity to carnitine acetyltransferases (CAT) from other organisms. Total CAT activity was found to be inducible by acetate and fatty acids and repressed by glucose. Ac...
متن کاملRedesign of carnitine acetyltransferase specificity by protein engineering.
In eukaryotes, L-carnitine is involved in energy metabolism by facilitating beta-oxidation of fatty acids. Carnitine acetyltransferases (CrAT) catalyze the reversible conversion of acetyl-CoA and carnitine to acetylcarnitine and free CoA. To redesign the specificity of rat CrAT toward its substrates, we mutated Met564. The M564G mutated CrAT showed higher activity toward longer chain acyl-CoAs:...
متن کاملProteomic analysis of the soil filamentous fungus Aspergillus nidulans exposed to a Roundup formulation at a dose causing no macroscopic effect: a functional study.
Roundup® is a glyphosate-based herbicide (GBH) used worldwide both in agriculture and private gardens. Thus, it constitutes a substantial source of environmental contaminations, especially for water and soil, and may impact a number of non-target organisms essential for ecosystem balance. The soil filamentous fungus Aspergillus nidulans has been shown to be highly affected by a commercial formu...
متن کاملFunction of carnitine in the fatty acid oxidase-deficient insect flight muscle.
The metabolic function of carnitine in the fatty acid oxidase-deficient flight muscle of the blowfly, Phormia regina, was investigated. Mitochondria from flies did not oxidize pahnitate or hexanoate in the presence of adenosine triphosphate, coenzyme A, carnitine, and serum albumin. Pahnitoyl carnitine was oxidized at an extremely slow rate, QOz of 20. The rate of synthesis of the carnitine est...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Eukaryotic cell
دوره 10 4 شماره
صفحات -
تاریخ انتشار 2011